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A B S T R A C T

This paper focuses on the study of structural high-cycle fatigue problems commonly encountered in engineering 
and presents a fatigue-constrained isogeometric topology optimization (FCITO) method. First, the isogeometric 
analysis (IGA) framework for high-cycle fatigue problems is outlined. On this basis, a mathematical model for the 
FCITO method is established using the solid isotropic material with penalization (SIMP) method. The model aims 
to minimize compliance while considering volume and the Soderberg fatigue criterion constraints. Additionally, 
a modified P-norm function is employed to manage the numerous fatigue constraints, while the relaxation 
method is applied to address singularity issues. Moreover, the complete sensitivity equations for the objective 
function, volume constraint function, and fatigue constraint function are also provided. Finally, the effectiveness 
and capability of the presented FCITO method are demonstrated through several 2D and 3D examples.

1. Introduction

Topology optimization (TO) is an effective structural conceptual 
design approach that aims to find the optimal material distribution 
within a specified design domain to meet performance requirements [1,
2]. Modern TO method originated from the seminal work by Bendsøe 
and Kikuchi in 1988 [3]. Over the past three decades, numerous new TO 
methods have emerged, including the solid isotropic material with 
penalization (SIMP) method [4], the evolutionary structural optimiza-
tion (ESO) method [5], the level-set method (LSM) [6], and the moving 
morphable components/voids (MMC/V) methods [7,8]. TO methods 
have been applied to a wide range of physical problems, such as stiffness 
[9], vibration [10,11], stress [12–14], thermal conduction [15], fluid 
dynamics [16], and acoustics [17]. Among these, structural stiffness 
optimization has been extensively studied. However, in engineering 
practice, stiffness-based topology optimization alone is often insuffi-
cient. Many mechanical structures are subject to prolonged service pe-
riods, leading to potential fatigue damage [18,19]. Therefore, 
incorporating fatigue resistance into topology optimization is essential.

Currently, fatigue-constrained topology optimization (FCTO) 
methods have been developed and applied to various engineering 
problems [20,21], such as the fatigue optimization of lightweight aerial 
mounts [22,23], helicopter tail rotor pitch arms [24], engine connecting 

rods [25], and jacket support structure of offshore wind turbine [26]. In 
2008, Desmorat et al. [27] were the first to integrate fatigue consider-
ations into TO by employing Lemaitre’s damage law to maximize 
structural fatigue life. Following this, Sherif et al. [28] introduced a 
method that converts dynamic loads into equivalent static loads to 
incorporate fatigue analysis into TO, enhancing structural fatigue 
resistance. James et al. [29] employed a coupled nonlinear brittle 
damage model within the framework of FCTO to simulate damage 
accumulation. Collet et al. [30] applied a modified Goodman fatigue 
criterion to address structural optimization problems under local fatigue 
constraints. Nabaki et al. [31] investigated the application of the 
modified Goodman fatigue criterion in topology optimization using the 
bi-directional evolutionary structural optimization (BESO) method. 
They further compared the impact of the Gerber fatigue criterion and the 
ASME-elliptic fatigue criterion on the resulting optimization outcomes 
[32]. Jeong et al. [33–36] explored fatigue damage under both pro-
portional and nonproportional loads, implementing corresponding so-
lutions in topology optimization. Chen et al. [37] developed a topology 
optimization framework for addressing Crossland fatigue constraints 
under proportional loading, based on the augmented Lagrangian 
method and the constrained natural element method. And, they further 
advanced this framework by incorporating multiaxial high-cycle fatigue 
criteria into topology optimization using the constrained natural 
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element method [38]. Additionally, various fatigue criterions, including 
Murakami’s formula [39] and Soderberg’s fatigue criterion [40], have 
been integrated into topology optimization to address different engi-
neering challenges. On the other hand, several researchers have devel-
oped various TO methods focusing on fatigue damage accumulation [35,
41–43]. Holmberg et al. [44] proposed a TO method aimed at mass 
minimization under fatigue constraints by integrating high-cycle fatigue 
analysis with principal stress calculations, based on the Palmgren-Miner 
rule. James and Waisman [45] presented a damage-based structural 
optimization method under multiple load cases. This method utilizes a 
coupled nonlinear brittle damage model to simulate damage accumu-
lation, achieving minimum structural mass under damage constraints. 
Oest et al. [46,47] explored high-cycle fatigue damage in TO using the 
aggregation function and the Palmgren-Miner rule. Zhang et al. [48] 
introduced a FCTO method tailored for non-proportional cyclic loading, 
also grounded in the Palmgren-Miner rule. Chen et al. [49,50] examined 
the differences between the P-norm aggregation method and the 
augmented Lagrange method in addressing fatigue constraints in TO. 
Tauzowski et al. [51] incorporated structural reliability into the FCTO 
framework. Gu et al. [52] developed a novel FCTO method based on 
nonlinear fatigue damage rules. Furthermore, FCTO methods focused on 
fatigue damage accumulation techniques have been applied to various 
challenges, including multi-material design [53], flexible mechanisms 
design [54], and polygonal mesh structures [55].

Although significant advancements have been made in the devel-
opment of TO methods with fatigue constraints, these methods have 
predominantly been built upon traditional finite element analysis (FEA) 
techniques. FEA relies on the element discretization of the geometric 
model, leading to an analysis model that only approximates the original 
geometry. Additionally, these elements are merely C0-continuous with 
one another, which diminishes the accuracy of the analysis. To address 
these limitations, Hughes et al. presented the isogeometric analysis 
(IGA) method in 2005 [56]. This approach directly employs the 
non-uniform rational b-splines (NURBS) basis functions from the geo-
metric model as the shape functions for analysis, thereby unifying the 
geometric and analytical models. In particular, the h-refinement scheme 
in NURBS basis functions enables rapid refinement of discrete meshes 
without affecting the underlying geometric model. Furthermore, the 
NURBS basis functions facilitate higher-order continuity between ele-
ments, enhancing the overall accuracy of the analysis [57]. This con-
tributes to the accuracy of the fatigue analysis.

In 2010, Seo et al. [58] introduced the IGA method into TO and 
proposed the isogeometric topology optimization (ITO) method. Dedè 
et al. [59] implemented the ITO method for compliance problems using 
the phase-field model. Wang et al. [60] proposed an accurate and effi-
cient ITO method based on the level set method and further investigated 
the ITO method for periodic lattice materials [61]. Subsequently, they 
introduced a human-aided design (HAD) approach, replacing traditional 
computer-aided design (CAD) in the ITO framework [62]. Gao et al. [63] 
explored a density-based ITO method and later developed ITO ap-
proaches for 2D and 3D metamaterials [64]. Hou et al. [65] proposed an 
explicit ITO method based on the MMC method. Qiu et al. [66] com-
bined the ESO method to propose an ITO method with smooth boundary 
continuity. To date, ITO methods have been applied to various prob-
lems, including compliant mechanisms [67,68], shell structures [69,70], 
crack propagation [71], and multi-materials [72,73]. Notably, in recent 
years, some scholars have begun to consider structural strength in the 
ITO framework [74–76]. Liu et al. [77] presented an ITO method 
considering global stress constraints, while Villalba et al. [78] developed 
a material distribution-based ITO method that accounts for minimum 
weight and local stress constraints. Zhuang et al. [79] established a 
structural stress ITO method based on Bézier elements.

However, no research has yet addressed the critical issue of fatigue 
damage within the context of ITO methods, despite the fact that high- 
cycle fatigue is a common failure mode in engineering structures. This 
form of failure typically occurs under conditions of low stress (far below 

the yield stress) but with a high number of cycles. Therefore, it is 
essential to achieve the minimum cost structure while ensuring fatigue 
resistance. In this work, we exploit the advantages of IGA to present a 
fatigue-constrained ITO (FCITO) method. Specifically, we focus on high- 
cycle fatigue problems under proportional cyclic loading and establish a 
mathematical model for FCITO that targets structural compliance while 
considering fatigue and volume constraints. Additionally, the modified 
P-norm function is employed to handle local fatigue constraints, and 
sensitivity equations for both the objective and constraint functions are 
derived. Finally, the Method of Moving Asymptotes (MMA) [80,81] is 
used to solve the optimization model, and several examples are pre-
sented to validate the effectiveness of the proposed method.

The remainder of the paper is organized as follows. Section 2 pro-
vides a brief overview of the fundamental theory of IGA. Section 3 ex-
plains the relevant theories of high-cycle fatigue under proportional 
cyclic loading. Section 4 describes in detail the implementation and 
mathematical model of the presented FCITO method, along with the 
material interpolation scheme of the SIMP method and the fatigue 
constraint function. Subsequently, in Section 5, the sensitivity equations 
for the fatigue constraint function of the FCITO method are fully pre-
sented. In Section 6, several 2D and 3D examples are utilized to validate 
the effectiveness of the presented FCITO method. Finally, in Section 7, 
we summarize the conclusions of this study.

2. NURBS-based isogeometric analysis

Initially, we briefly introduce the basic theory of NURBS in Section 
2.1. Then, an isogeometric structural mechanics analysis method based 
on NURBS is described in Section 2.2.

2.1. NURBS theory

NURBS, one of the commonly adopted curved surface representa-
tions in computer-aided design and computer graphics, is constructed 
from B-splines. For a non-decreasing sequence of real numbers (called 

the node vector) Ξ =
{

ξ1, ξ2, ..., ξn+p+1

}
(where p is the order of B-spline 

basis functions, ξi is i-th knot values with i = 1,2,...,n+ p+ 1), the 1D B- 
spline basis function Bi,p(ξ) can be defined by the Cox-de Boor recursion 
equations as follows [56,82]: 

Bi,p(ξ) =

{
1 ifξi ≤ ξ < ξi+1

0 otherwise
for p = 0 (1) 

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p− 1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,p− 1(ξ) for p > 0 (2) 

where 
[
ξ1, ξn+p+1

]
is a patch, [ξi, ξi+1) is the i-th knot span.

By assigning a weight ωi to each basis function Bi,p(ξ) one obtains the 
p-order NURBS basis functions as [83]: 

Ni,p(ξ) =
Bi,p(ξ)ωi
∑n

j=1
Bj,p(ξ)ωj

(3) 

Similarly, the 2D NURBS basis functions are constructed as: 

Nj,q
i,p(ξ, η) =

Bi,p(ξ)Bj,q(η)ωi,j
∑n

k=1

∑m

l=1
Bk,p(ξ)Bl,q(η)ωk,l

(4) 

where Bi,p(ξ) and Bj,q(η) are B-spline basis functions defined in two di-
rections (ξ and η), ωi,j is the weight value corresponding to the tensor 
product Bi,p(ξ)Bj,q(η).

Therefore, a NURBS surface of order p in the ξ direction and order q 
in the η direction is expressed as: 
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S(ξ, η) =
∑n

i=1

∑m

j=1
Nj,q

i,p(ξ, η)Pi,j (5) 

where Pi,j is a control point on the NURBS surface.

2.2. Isogeometric structural mechanical analysis

Traditional FEA requires discretizing the analysis domain into ele-
ments, which introduces discrepancies between the discretized model 
and the original geometric model, thereby reducing accuracy. In 
contrast, IGA directly operates on an exact NURBS geometric model, 
eliminating spatial discretization errors [60]. Fig. 1 illustrates the 2D 
analysis domain after spatial discretization for both FEA and IGA, each 
comprising 3 × 3 elements. When using first-order elements (p = 1), the 
NURBS elements in IGA are identical to Lagrange elements, and the IGA 
control points align with the 16 nodes used in FEA. For quadratic ele-
ments (p = 2), the FEA model requires 49 nodes, whereas the IGA model 
only requires 25 control points, highlighting that IGA has significantly 
fewer degrees of freedom in higher-order cases compared to FEA. 

Additionally, IGA provides C1 continuity between NURBS elements (see 
Fig. 1(b)), while FEA maintains only C0 continuity between Lagrange 
elements (see Fig. 1(c)). The above analysis accuracy and advantages of 
IGA have been demonstrated in previous literature [84–86]. As a result, 
IGA ensures higher-order continuity of displacement and stress between 
elements, which is advantageous for structural fatigue analysis. 
Furthermore, we have included an example comparing IGA and FEA in 
Appendix A.

In IGA, the discrete static equilibrium equation for a linear elastic 
continuum can be given as: 

KU = F (6) 

where F denotes the load vector, U is the global displacement vector, 
and K is the global stiffness matrix. The expressions for U and K are as 
follows [61,82]: 

U(ξ, η) =
∑m

i=1

∑n

j=1
Ni,j(ξ, η)ui,j (7) 

Fig. 1. Spatial discretization for a 2D plate: (a) Linear NURBS/Lagrange elements, (b) Quadratic NURBS elements of IGA, (c) Quadratic Lagrange elements of FEA.
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K =
∑NE

e=1
ke =

∑NE

e=1

∫

Ωe

BTD0BdΩe

=
∑NE

e=1

∫

Ω̂e

BTD0B|J1|dΩ̂e

=
∑NE

e=1

∫

Ωe

BTD0B|J1||J2|dΩe

(8) 

where ui,j denotes the displacement of the control point, ke denotes the 
stiffness matrix of element e, NE is the total number of elements, B is the 
constitutive matrix, D0 is the stress-strain matrix, Ωe and Ω̂e are the 
physical domain and the parameter domain of NURBS for element e, Ωe 
is the integral domain of element e, and J1 and J2 are the Jacobi 
transformation matrices from the NURBS parameter domain to the 
physical domain and from the integral domain to the NURBS parameter 
domain, respectively. Details of the specific equations have been pro-
vided in Appendix B.

For the 2D problem, the elemental stresses σe and von Mises stresses 
σvm

e based on the IGA are as follows: 

σe = D0Bue =
[
σex, σey, τexy

]T (9) 

σvm
e =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(σex)
2
+
(
σey
)2

− σexσey + 3
(
τexy
)2

√

(10) 

where ue is a displacement vector consisting of the control point dis-
placements ui,j of element e, and σex, σey, τexy are the three components of 
the stress vector of element e, respectively.

3. Structural fatigue analysis

This study focuses on ITO method under high-cycle fatigue con-
straints with constant amplitude. Therefore, this section primarily in-
troduces the theoretical background related to proportional cyclic 
loading conditions and high-cycle fatigue failure (generally ≥ 107 cy-
cles), which form the basis for the FCITO method.

3.1. Proportional cyclic loading

The structural fatigue life is influenced by the stress amplitudes 
generated by cyclic loading. In this study, we focus on high-cycle fatigue 
under cyclic loading. Fig. 2(a) illustrates a proportional cyclic load, 
which induces a change in the stress state of the structure, as depicted in 
Fig. 2(b). The stress state of element e in the cyclic loading process can 
be defined as: 

σa
e =

(σe)max − (σe)min
2

(11) 

σm
e =

(σe)max + (σe)min
2

(12) 

where σa
e is the stress amplitude, σm

e is the average stress, (σe)max is the 
maximum stress under cyclic loading, and (σe)min is the minimum stress 
under cyclic loading. It is important to note that stress amplitude and 
mean stress can be calculated from the maximum (or minimum) load by 
introducing appropriate scaling factors [31,32]. This method is appli-
cable to cases where structures undergo elastic deformation under 
high-cycle fatigue. Therefore, the vectors of stress amplitude and mean 
stress are as follows: 

σa
e = caσe =

[
σa

ex, σa
ey, τa

exy

]T
(13) 

σm
e = cmσe =

[
σm

ex, σm
ey, τm

exy

]T
(14) 

Here, ca and cm are the scaling factors for stress amplitude and mean 
stress, respectively. Their expressions are as follows: 

ca =
1 − (Fmin/Fmax)

2
(15) 

cm =
1 + (Fmin/Fmax)

2
(16) 

The von Mises stress measurement method is used to equivalently 
evaluate the stress amplitude and mean stress of the element as follows: 

σavm
e =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
σa

ex
)2

+
(

σa
ey

)2
− σa

exσa
ey + 3

(
τa

exy

)2
√

(17) 

σmvm
e =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
σm

ex
)2

+
(

σm
ey

)2
− σexσey + 3

(
τm

exy

)2
√

(18) 

where σavm
e and σmvm

e represent the equivalent stress amplitude and 
equivalent mean stress, respectively.

3.2. Fatigue theory

In the case of high-cycle fatigue, structural fatigue damage generally 
occurs at stress levels that do not exceed the yield stress. Currently, the 
mainstream theories for evaluating the uniaxial high-cycle fatigue 
damage of structures are the Gerber equation, the Goodman equation, 
the ASME-elliptic equation, and the Soderberg equation. The equations 
of the four theories are as follows [32,40,87]: 

Gerber : DGB
e =

σa
e

σNf
+

(
σm

e
σut

)2

≤ 1 (19) 

Fig. 2. A proportional cyclic load history: (a) Load, (b) Stress.
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Goodman : DGM
e =

σa
e

σNf
+

σm
e

σut
≤ 1 (20) 

ASME − elliptic : DASME
e =

(
σa

e
σNf

)2

+

(
σm

e
σy

)2

≤ 1 (21) 

Soderberg : DSB
e =

σa
e

σNf
+

σm
e

σy
≤ 1 (22) 

where σy denotes the yield stress, σut denotes the ultimate stress, and σNf 

represents the stress level at which a general metallic material will not 
fail under an infinite number of loading cycles. The stress σNf can be 
calculated using the Basquin equation, which describes the S-N curve (S 
and N denote the stress and the load cycles when the structure fails 
respectively) [52]: 

σNf = σʹ
f
(
2Nf

)b (23) 

where Nf denotes the number of load reversals, σʹ
f denotes the fatigue 

strength coefficient, and b is fatigue strength exponent of the material.
The fatigue life curves corresponding to the four theories are illus-

trated in Fig. 3. It can be observed that the Soderberg equation is the 
most conservative of the four theories. In contrast, the other three the-
ories allow for wider design domains, resulting in lower safety margins. 
Therefore, to account for all potential situations of damage, we select the 
Soderberg equation to evaluate damage generation in this study. The 
range defined by the combination of stress amplitude and mean stress 
that satisfies the conditions of the Soderberg equation is referred to as 
the safety region. In addition, when certain mechanical structures 
require a high safety factor, such as in aerospace and marine equipment, 
the conservative Soderberg equation is more appropriate. Building on 
the fatigue theories discussed above, the main objective of this paper is 
to solve the ITO problem subject to the Soderberg fatigue criterion. Also, 
the influence of compressive mean stress on structural damage is 
included in the optimization. In fact, metals are typically resistant to 
damage under compressive fatigue loading, as this type of loading does 
not promote crack propagation. Therefore, including compressive loads 
in the current study results in more conservative designs for metal 
structures.

4. Implementation of the FCITO method

In this section, we present a detailed description of the complete 
scheme of the FCITO method. First, the ITO model for fatigue damage 

constraints, along with the projection and filtering methods for the 
design variables, is described in Section 4.1. Subsequently, a material 
interpolation scheme based on the SIMP method is outlined in Section 
4.2. Additionally, Section 4.3 illustrate the process of implementing 
fatigue constraints employing the modified P-norm function.

4.1. FCITO model

In this section, the topology optimization problem is defined as 
finding a structural design that maximizes stiffness while satisfying 
volume and fatigue constraints across the entire design domain. 
Therefore, we develop an ITO model for compliance minimization that 
satisfies the volume and fatigue constraints. The model is expressed as: 

find : ρ
min : c(ρ) = UT

1KU1

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

KU1 = Fmax, KU2 = Fmin

V(ρ) =
∑NE

e=1
ρeve ≤ Vf

max
(
DSB

e

)
≤ 1, e = 1, 2, ⋅⋅⋅,NE

0 < ρmin ≤ ρi,j
e ≤ 1, i = 1, 2, ⋅⋅⋅, n; j = 1, 2, ⋅⋅⋅,m

(24) 

where V(ρ) denotes the total volume of the structure, ve is the volume of 
the element e, U1 is the global displacement vector induced by the 
maximum load vector Fmax, U2 is the global displacement vector induced 
by the minimum load vector Fmin, Vf is the prescribed volume fraction, 
ρe denotes the relative density of element e, max

(
DSB

e
)

denotes the 
maximum value of the structural damage, NE is the total number of 
elements, and ρi,j

e denotes the relative density of the control points with 
element e, ρmin is a small density used to avoid numerical singularities in 
the stiffness matrix (typical value ρmin = 0.001), n and m are the number 
of control points in the ξ and η directions, respectively. It is worth noting 
that the objective function aims to solve for the compliance minimiza-
tion of the entire structure under the maximum load.

In the ITO, the element center density value is employed to represent 
the relative density of element ρe. This can be obtained by interpolating 
the NURBS basis functions of the control points with the following 
expression: 

ρe =
∑n

i=1

∑m

j=1
Nj,q

i,p
(
ξc

e, ηc
e
)

ρ̂i,j
e , ρ̂i,j

e ∈ [0,1] (25) 

Fig. 3. Fatigue curves for Gerber, Goodman, ASME-elliptic, and Soderberg.
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where 
(
ξc

e, ηc
e
)

is the parametric coordinate of the center of element e, 
and ρ̂i,j

e is the density of control points after the projection associated 
with element e. The density is projected to reduce the gray scale ele-
ments in the optimization result. In this study, we project the filtered 
density field using the Heaviside projection function which is as follows 
[88]: 

ρ̂i,j
e =

tanh(βα) + tanh
(
β
(
ρi,j

e − α
))

tanh(βα) + tanh(β(1 − α)) (26) 

where ρi,j
e denotes the filtered density of the control point, β controls the 

curvature of the smoothed projection, and α defines the threshold that 
pushes the value of ρi,j

e to 0 or 1. In this work, we employ a single pro-
jection with α = 0.5.

Furthermore, to avoid the checkerboard phenomenon during the 
optimization process and improve the computational efficiency, we 
adopt a density filter to solve the problem with the expression [89,90]: 

ρi,j
e =

∑

l∈Nij

wij,l
(
ρi,j

e
)

l

∑

la∈Nij

wij,la
(27) 

wij,l = (rmin − dist(ij, l)),
{
l ∈ Nij|dist(ij, l) ≤ rmin

}
(28) 

where wij,l is the weight coefficient, Nij is the total number of control 
points located within a certain radius distance from control point (i, j), 
rmin is the filtering radius, and dist(ij, l) is the Euclidean distance between 
control points l and (i, j).

4.2. Material interpolation scheme based on SIMP method

The SIMP method is one of the most extensively utilized techniques 
in the field of topology optimization, owing to its remarkable generality 
and stability. Consequently, to accurately represent the relative density 
distribution within the design domain in ITO, we employ the SIMP 
method to define the relative density interpolation model for the ma-
terial properties of the elements. The material interpolation scheme 
based on the SIMP method is as follows [9]: 

Ee(ρe) = Emin + (ρe)
pp
(E0 − Emin) (29) 

where E0 denotes the Young’s modulus of the solid part of the material, 
while Emin represents a very small Young’s modulus assigned to the 
cavity region to prevent singularities in the stiffness matrix. The 
parameter pp is a penalty factor, typically set to 3, to ensure a clear 
black-and-white solution.

According to the SIMP method, the interpolated global stiffness 
matrix K and objective function c(ρ) are as follows: 

K =
∑NE

e=1
ke =

∑NE

e=1
Ee(ρe)k0 (30) 

c(ρ) = UT
1KU1 =

∑NE

e=1
Ee(ρe)(ue)

T
1k0(ue)1 (31) 

where k0 represents the elemental stiffness matrix of the solid material 
in IGA, and (ue)1 is the element displacement vector arising from the 
maximum load vector Fmax.

4.3. Fatigue constraint

Similar to stress constraints, fatigue constraints are local measures 
and involve a substantial number of constraints in topology optimization 
[49,52,91]. Addressing this issue directly will be expensive. Therefore, 
we employ the P-norm function to address the fatigue damage constraint 
problem, aiming to mitigate the numerical burden resulting from the 

excessive number of constraints. The aggregation function for fatigue 
damage constraints is defined as follows: 

DSB
pn =

(
∑NE

e=1

(
DSB

e
)pn
)1/pn

≤ 1 (32) 

where pn is the P-norm coefficient, typically set to 8. A higher value of pn 
yields more accurate calculations but may induce oscillations in the 
solution process. Conversely, a lower pn value results in less accurate 
calculations.

In this study, we adopt the normalized global stress measure method 
proposed by Le et al. [92], also known as adaptive constraint scaling 
[14]. This method leverages information from previous optimization 
iterations for scaling, enabling a closer approximation of the maximum 
stress. In this way, it effectively overcomes the limitations of the P-norm 
function in constraining the maximum stress. The damage obtained 
through the P-norm function is modified as follows: 

DSB
pn ≈ χIDSB

pn ≤ 1 (33) 

where χI is the scaling factor for the I-th iteration, and its expression is as 
follows: 

χI = φI
max

((
DSB

e
)I− 1

)

(
DSB

pn

)I− 1 +
(
1 − φI)χI− 1, φI ∈ (0, 1] (34) 

where 
(

DSB
pn

)I− 1 
is the P-norm value of structural damage in the (I-1)-th 

iteration, and max
((

DSB
e
)I− 1

)
denotes the maximum structural damage 

value in the (I-1)-th iteration. If oscillations occur in during the iterative 
process, a value of 0 < φI < 1 is selected; otherwise, φI = 1 is chosen. As 

the iteration converges, 
(

DSB
pn

)I
≈
(

DSB
pn

)I− 1 
and max

((
DSB

e
)I
)
≈

max
((

DSB
e
)I− 1

)
, thereby achieving convergence, i.e. χIDSB

pn ≈

max
((

DSB
e
)I
)

. More details about this method can be found in reference 

[14,92].
In addition, fatigue optimization methods face the same challenges 

as stress optimization methods, such as singular solutions and nonlinear 
behavior. Therefore, we apply a relaxation method [93,94] to penalize 
Eq. (9) in order to address these issues. This method yields the stresses in 
element e as: 

σe = ρqq
e D0Be(ue)1 (35) 

where qq denotes the relaxation factor, with a typical value equal to 0.5.

5. Sensitivity analysis

To address the fatigue constraint problem using a gradient-based 
optimizer (e.g., MMA), it is necessary to derive the first-order sensi-
tivity of the objective and constraint functions with respect to the design 
variable ρi,j

e . Since the sensitivities of the objective function and the 
volume constraint function with respect to the design variables have 
been extensively documented in other literature, we have included these 
fundamental equations in Appendix C and Appendix D. Therefore, this 
section focuses on elaborating the adjoint method for solving the 
sensitivity equations of the fatigue constraint function with respect to 
the design variables.

The first-order sensitivity of the fatigue constraint function to the 
design variable ρi,j

e after processing utilizing the modified P-norm func-
tion is computed by the chain rule as: 
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∂DSB
pn

∂ρi,j
e

=
∂DSB

pn

∂DSB
pn

∂DSB
pn

∂DSB
e

(
∂DSB

e
∂σavm

e

∂σavm
e

∂σa
e

∂σa
e

∂σe
+

∂DSB
e

∂σmvm
e

∂σmvm
e

∂σm
e

∂σm
e

∂σe

)
∂σe

∂ρe

∂ρe

∂ρ̂i,j
e

∂ρ̂i,j
e

∂ρi,j
e

∂ρi,j
e

∂ρi,j
e

(36) 

Here, the expressions ∂D
SB
pn

∂DSB
pn 

and ∂DSB
pn

∂DSB
e 

are provided by Eqs. (33) and (32): 

∂DSB
pn

∂DSB
pn

= χI (37) 

∂DSB
pn

∂DSB
e

=

(
∑NE

e=1

(
DSB

e
)pn
)1/pn− 1

(
DSB

e
)pn− 1 (38) 

Table 1 
A typical mild steel material properties.

Material property Value

Young’s modulus E0 210 GPa
Poisson’s ratio υ 0.3
Fatigue strength coefficient σʹ

f 593 MPa
Fatigue strength exponent b − 0.086
The number of load reversals Nf 107

Yield stress σy 240 MPa
Ultimate stress σut 358 MPa

Fig. 4. The procedure flow chart of the presented FCITO method.

Table 2 
Parameters in ITO.

Parameter Value

Order of NURBS basis functions 2
Young’s modulus for void element Emin 10− 9E0

Density penalty factor pp 3
P-norm coefficient pn 8
Stress relaxation factor qq 0.5
Filtering radius rmin 3
Maximum iteration step 200
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The expressions ∂DSB
e

∂σavm
e 

and ∂DSB
e

∂σmvm
e 

are obtained according to Soderberg’s 
equation: 

∂DSB
e

∂σavm
e

=
1

σNf
(39) 

∂DSB
e

∂σmvm
e

=
1
σy

(40) 

According to Eqs. (17) and (18), the expressions for ∂σavm
e

∂σa
e 

and ∂σmvm
e

∂σm
e 

are: 

∂σavm
e

∂σa
e

=
1

2σavm
e

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2σa
ex − σa

ey

2σa
ey − σa

ex

6τa
exy

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(41) 

∂σmvm
e

∂σm
e

=
1

2σmvm
e

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2σm
ex − σm

ey

2σm
ey − σm

ex

6τm
exy

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(42) 

The expressions for ∂σa
e

∂σe 
and ∂σm

e
∂σe 

are derived from Eqs. (13) and (14), as 
follows: 

∂σa
e

∂σe
= ca (43) 

∂σm
e

∂σe
= cm (44) 

According to Eqs. (9) and (35), the sensitivity ∂σe
∂ρe 

of the stresses to the 
element density has the following two components: 

∂σe

∂ρe
= qqρqq− 1

e D0Be(ue)1 + ρqq
e D0Be

∂(ue)1
∂ρe

(45) 

Here, since the expressions ∂(ue)1
∂ρe 

is unknown. Therefore, we utilize 
the adjoint method to solve them and the following two equations can be 
obtained from the Eq. (6): 

∂ke

∂ρe
(ue)1 + ke

∂(ue)1

∂ρe
= 0 (46) 

where ∂ke
∂ρe 

is derived according to Eqs. (29) and (30): 

∂ke

∂ρe
=
(
pp(ρe)

pp− 1
(E0 − Emin)

)
k0 (47) 

Further, introducing the accompanying vectors λa
e and λm

e in Eq. (36)
can be given: 

∂DSB
pn

∂ρi,j
e

= Ae

(

Ca
e

(

qqρqq− 1
e D0Be(ue)1 + ρqq

e D0Be
∂(ue)1

∂ρe

)

+
(
λa

e
)T
(

Ge(ue)1 + ke
∂(ue)1

∂ρe

)

+Cm
e

(

qqρqq− 1
e D0Be(ue)1 + ρqq

e D0Be
∂(ue)1

∂ρe

)

+
(
λm

e

)T
(

Ge(ue)1 + ke
∂(ue)1

∂ρe

))

He

(48) 

where Ae, Ca
e , Cm

e , Ge and He are expressions as follows: 

Ae = χI

(
∑NE

e=1

(
DSB

e
)pn
)1/pn− 1

(
DSB

e
)pn− 1 (49) 

Ca
e = ca 1

σNf

1
2σavm

e

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2σa
ex − σa

ey

2σa
ey − σa

ex

6τa
exy

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(50) 

Fig. 5. The design domain and boundary conditions of the L-shaped bracket.

Fig. 6. Iterative histories of the L-shaped bracket: (a) FCITO method, (b) 
SCITO method.
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Fig. 7. Optimization results of the L-shaped bracket: (a) FCITO method, (b) SCITO method.

Fig. 8. Soderberg diagrams of the L-shaped bracket damage: (a) FCITO method, (b) SCITO method.
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Cm
e = cm 1

σy

1
2σmvm

e

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2σm
ex − σm

ey

2σm
ey − σm

ex

6τm
exy

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(51) 

Ge =
(
pp(ρe)

pp− 1
(E0 − Emin)

)
k0 (52) 

He =
∑n

i=1

∑m

j=1
Nj,q

i,p(ξe, ηe)
β
(
sech

(
β
(
ρi,j

e − α
)))2

tanh(βα) + tanh(β(1 − α))
wij,l

∑
la∈Nij

wij,la
(53) 

For removing the unknown expression ∂(ue)1
∂ρe

, the following method is 
employed to solve for the accompanying vectors λa

e and λm
e . 

Ca
e ρqq

e D0Be +
(
λa

e
)Tke = 0 (54) 

Cm
e ρqq

e D0Be +
(
λm

e
)Tke = 0 (55) 

Therefore, the equations for the accompanying vectors λa
e and λm

e can 
be obtained as follows: 

λa
e =

(
− Ca

e ρqq
e D0Bek− 1

e
)T (56) 

λm
e =

(
− Cm

e ρqq
e D0Bek− 1

e
)T (57) 

Finally, we gained an expression for the sensitivity of the fatigue 
constraint function after treatment with the modified P-norm function: 

∂DSB
pn

∂ρi,j
e

= Ae

(
Ca

eqqρqq− 1
e D0Be(ue)1 +

(
λa

e
)TGe(ue)1

+Cm
e qqρqq− 1

e D0Be(ue)1 +
(
λm

e
)TGe(ue)1

)
He

(58) 

6. Numerical examples and discussion

In this section, we demonstrate the effectiveness of the FCITO 
method through several examples. All examples utilize the properties of 
typical mild steel, with the relevant parameters provided in Table 1
[31]. The procedure flow chart of the presented FCITO method is shown 
in Fig. 4. For high-cycle fatigue problems, the stresses induced by 
external loads typically remain well below the structural strength limit 
and predominantly result in elastic deformations. Thus, we assume that 
the material is isotropic and linear elastic. Simultaneously, the design 
domain of the 2D structures is discretized applying quadratic NURBS 
quadrilateral elements, while the 3D structures are discretized applying 
quadratic NURBS hexahedral elements. The initial density variable of 
the elements is set to 1, with the move limit for the MMA asymptotes set 
to 0.02 for 2D structures and 0.25 for 3D structures to ensure stable 
optimization iterations. The relevant parameters in the ITO are provided 
in Table 2. Additionally, all examples were computed on a desktop PC 
equipped with a CPU Inter® Core™ i7–12700F of 2.1 GHz, 12 cores, 20 
threads, 32 GB of RAM, and implemented using MATLAB®2022a 
software.

6.1. Example 1: L-shaped bracket

In the first example, the validity of the FCITO method was verified 
utilizing a classical L-shaped bracket. The structural dimensions, 
boundary conditions, and applied loads for this L-shaped bracket are 
described in Fig. 5. The design domain is discretized adopting 10,608 
quadratic NURBS quadrilateral elements. The high-cycle fatigue loads 
applied to the structure have a maximum magnitude of Fmax = 270N and 

Table 3 
The compliance, maximum stress, and maximum damage of the L-shaped 
bracket from different methods.

Method Compliance (N⋅mm) Max. stress (MPa) Max. damage

FCITO 108.53 192.84 0.996
SCITO 105.55 240.00 1.241

Fig. 9. The design domain and boundary conditions of the double L-sha-
ped bracket.

Fig. 10. Iterative histories of the double L-shaped bracket: (a) Load case 1, (b) 
Load case 2.
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a minimum magnitude of Fmin = 90N. Additionally, the L-shaped 
bracket is subjected to a volume fraction of Vf = 0.3 during the opti-
mization process.

To validate the effectiveness of the proposed FCITO method, we 
employ a traditional stress-constrained isogeometric topology optimi-
zation (SCITO) method for comparison. It is important to note that the 
SCITO method is applied to the minimum compliance problem under 
volume and stress constraints, where the volume constraint is set to Vf =

0.3 and the stress constraint is set to σy = 240MPa. In this study, the 
parameter settings for both methods are kept consistent. Fig. 6 exhibits 
the iterative histories of the optimization process for the L-shaped 

bracket using both the FCITO and SCITO methods. The resulting to-
pologies for the L-shaped bracket, obtained through these two methods, 
are displayed in Fig. 7, revealing their differences in structural layout. 
Furthermore, Fig. 8 illustrates the Soderberg diagrams of the L-shaped 
bracket damage, offering a detailed view of the fatigue characteristics 
observed in the structure. Notably, the topologies generated by both 
methods exhibit a specific curvature at the corners, aimed at mitigating 
excessive stress concentration in these regions. It is also evident that the 
topologies differ between the two methods. The results show that the 
combination of stress amplitude and mean stress in the topology 
generated by the FCITO method lies within the safe region of the 
Soderberg diagram. This indicates that the final structural design is 
fatigue-resistant under the specified number of reversals (Nf = 107). In 
contrast, the topology obtained using the traditional SCITO method 
exceeds the safe limits allowed by the Soderberg criterion (outside the 
safe region). These results demonstrate that, under the same volume 
constraint, the topology generated by the FCITO method satisfies the 
fatigue damage criterion constraints.

Additionally, Table 3 gives the compliance, maximum stress, and 

Fig. 11. Optimization results of the double L-shaped bracket: (a) Load case 1, (b) Load case 2.

Fig. 12. Soderberg diagrams of the double L-shaped bracket damage: (a) Load case 1, (b) Load case 2.

Table 4 
The compliance, maximum stress, and maximum damage of the double L-shaped 
bracket under different load cases.

Load Compliance (N⋅mm) Max. damage

Case 1 26.20 1.000
Case 2 25.94 1.000
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maximum damage for the two designs of the L-shaped bracket. The 
compliance values obtained by the two methods are similar, with the 
FCITO method yielding slightly higher values. The maximum stress 
obtained by the SCITO method is equal the yield stress threshold of σy =

240MPa, while the maximum damage reaches 1.241, and the compli-
ance is 105.55 N⋅mm. Compared to the SCITO method, the L-shaped 

bracket structure optimized by the FCITO method satisfies the fatigue 
constraints while reducing maximum stress by 19.65 %, with a 2.82 % 
increase in compliance. This demonstrates that the FCITO method 
significantly mitigates stress concentration at the bending edges, 
thereby preventing fatigue damage.

6.2. Example 2: double L-shaped bracket

In the second example, we adopted a double L-shaped bracket to 
discuss the effects of symmetric and asymmetric loads on the optimi-
zation results of the FCITO method. Note that the FCITO method does 
not account for stress constraints. The design domain, boundary con-
ditions, and applied loads for this double L-shaped bracket are depicted 
in Fig. 9. The double L-shaped bracket was discretized applying 5304 
quadratic NURBS quadrilateral elements and the volume fraction was 
set to 0.2 during the optimization process. Under symmetric loading 
conditions (named load case 1), the high-cycle fatigue load has a 
maximum magnitude of (F1)max = (F2)max = 120N and a minimum 
magnitude of (F1)min = (F2)min = 40N. For asymmetric loading (named 
load case 2), the maximum magnitude and minimum magnitude of the 
high-cycle fatigue load F1 are (F1)max = 120N and (F1)min = 40N, 
respectively, and the maximum magnitude and minimum magnitude of 
the high-cycle fatigue load F2 are (F2)max = 110N and (F2)min = 36N, 
respectively.

The iteration histories for optimizing the double L-shaped bracket 
using the FCITO method under different loading conditions are shown in 
Fig. 10. Approximately 175 iterations are required to achieve steady- 
state convergence for both cases. Fig. 11 presents the resulting topol-
ogies for both load cases, along with the corresponding stress and fatigue 
damage distributions. The analysis indicates that the optimized topology 
is symmetric when symmetric high-cycle fatigue loads are applied on 
both sides of the structure. However, under asymmetric high-cycle fa-
tigue loads, the resulting topology exhibits noticeable asymmetry. 
Additionally, Fig. 12 shows Soderberg diagrams of the double L-shaped 
bracket damage. The combinations of stress amplitude and mean stress 
in the topologies obtained under both load cases are located within the 
safe region of the Soderberg diagram.

Table 4 provides the compliance, maximum stress, and maximum 
damage values for the double L-shaped bracket under different load 
cases. In load case 1, the optimized bracket has a maximum compliance 
of 26.20 N⋅mm and a maximum damage value of 1.000. In load case 2, 
the maximum compliance is 25.94 N⋅mm and the maximum damage is 
1.000. These results demonstrate that the FCITO method effectively 

Fig. 13. The 3D models: (a) 3D cantilever beam, (b) 3D bridge.

Fig. 14. Iterative histories of the two 3D models: (a) 3D cantilever beam, (b) 
3D bridge.
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limits maximum fatigue damage under both symmetric and asymmetric 
loading. Additionally, the findings reveal that asymmetric loading re-
sults in higher stress levels, likely due to stress concentration effects 
associated with asymmetric load distribution.

6.3. Example 3: 3D model

In this section, two 3D models are employed to verify the feasibility 

of the FCITO method for addressing 3D problems. The FCITO method, 
which does not take into account the stress constraints, is applied in the 
optimization of the two 3D models. The geometry, boundary conditions, 
and loading conditions for both 3D models are illustrated in Fig. 13. The 
3D cantilever beam and 3D bridge are discretized by 10,800 and 8000 
quadratic NURBS hexahedral elements, respectively. For these two 3D 
structural design domains, the volume fraction and the number of load 
reversals are set to the same values, 0.3 and 107, respectively. The high- 
cycle fatigue load, uniformly applied to the top right boundary of the 3D 
cantilever beam, has a maximum value of Fmax = 608N and a minimum 
value of Fmin = 320N. Similarly, the high-cycle fatigue load, uniformly 
distributed across the top of the 3D bridge structure, has a maximum 
value of Fmax = 1101.6N and a minimum value of Fmin = 612N.

Fig. 14 depicts the iteration histories of the 3D cantilever beam and 
3D bridge obtained employing the FCITO method. It can be observed 
that the two 3D structural designs converge to a stabilized state after 

Fig. 15. Optimization results of the two 3D models: (a) 3D cantilever beam, (b) 3D bridge.

Fig. 16. Soderberg diagrams of damage for the two 3D models: (a) 3D cantilever beam, (b) 3D bridge.

Table 5 
The compliance, maximum stress, and maximum damage of the two 3D models.

Model Compliance (N⋅mm) Max. damage

3D cantilever beam 1043.63 0.993
3D bridge 474.81 0.994
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about 50 iterations. The optimization results for these structures are 
presented in Fig. 15, while the corresponding Soderberg diagrams are 
displayed in Fig. 16. Table 5 provides a detailed summary of the 
compliance, maximum stress, and maximum damage for both designs. 
The optimized 3D cantilever beam achieves a maximum compliance of 
1043.63 N⋅mm and the maximum damage value of 0.993. For the 
optimized 3D bridge, the maximum compliance is 474.81 N⋅mm and the 
maximum damage is 0.994. These results indicate that the maximum 
damage of both the 3D cantilever beam and the 3D bridge has been 
effectively controlled, demonstrating the feasibility of the proposed 
FCITO method for fatigue-resistant optimization of 3D structures.

6.4. Discussion

The presented FCITO method has been demonstrated using the 
example of an L-shaped bracket, showing its ability to constrain the 
Soderberg fatigue criterion below a threshold value. This indicates that 
the optimized structure will not experience fatigue failure under the 
specified number of load reversals. Furthermore, the FCITO method has 
been validated in addressing the fatigue design problem of 3D structures 
through examples of a 3D cantilever beam and a 3D bridge. However, 
the proposed FCITO method still has certain limitations and requires 
further investigation.

Firstly, the FCITO method does not account for more complex 
multiaxial fatigue criteria, such as the Sines, Crossland, and Findley 
criteria [38]. In future work, the FCITO method could be extended to 
address more complex multiaxial fatigue damage and non-proportional 
loading problems, thereby enabling structural optimization under more 
challenging loading conditions.

Secondly, more advanced aggregation methods could be employed 
to better approximate maximum fatigue damage, such as the maximum 
rectifier function [14]. Additionally, the augmented Lagrangian method 
could be considered to achieve more precise control over local con-
straints [37].

Thirdly, material plastic deformation could be incorporated into the 
FCITO method, making the theoretical model more closely aligned with 
real-world engineering applications.

7. Conclusions

In this work, we present an ITO method based on the SIMP method, 
incorporating fatigue constraints, and develop the corresponding 
mathematical model. The method aims to minimize structural compli-
ance while accounting for volume and fatigue constraints. The FCITO 

method specifically addresses the high-cycle fatigue problem of struc-
tures under proportional cyclic loading, leveraging the higher-order 
continuity of IGA elements to enhance analytical accuracy. To manage 
challenges such as the large number of constraints of fatigue problems, 
the modified P-norm function is employed to approximate the maximum 
fatigue damage of the elements with high precision, yielding a func-
tional form suitable for gradient-based optimization methods. Mean-
while, the relaxation method is utilized to address singularity issues. The 
sensitivity equations for the fatigue constraint function with respect to 
the design variables are derived using the adjoint method. Additionally, 
the proposed FCITO method is compared to the conventional SCITO 
method using an L-shaped bracket as test example. The FCITO method 
demonstrates superior effectiveness in mitigating structural fatigue 
damage compared to the SCITO method under equivalent material 
volume conditions. Notably, the optimized L-shaped bracket applying 
the FCITO method achieves a 19.65 % reduction in maximum stress, 
with only a 2.82 % increase in compliance. Furthermore, the effects of 
symmetric and asymmetric loading on the optimization results are 
analyzed using a double L-shaped bracket as an example. To further 
evaluate the feasibility and effectiveness of the FCITO method in solving 
high-cycle fatigue optimization for 3D structures, two 3D examples (a 
3D cantilever beam and a 3D bridge structure) are presented. These 
examples demonstrate that the FCITO method can successfully limit 
fatigue damage while achieving lightweight structural design.
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Appendix A. A simple example of IGA and FEA comparison

In this example, a simple 2D plate structure is employed to demonstrate the advantages of the IGA method over the traditional FEA method. The 
boundary conditions for the 2D plate are illustrated in Fig. A1. The left boundary is fixed, while a uniformly distributed static load of F = 10N/mm is 
applied at the right boundary. As shown in Fig. A2, IGA contains 512 quadratic NURBS elements and FEA contains 2048 quadratic Lagrange elements. 
The IGA method employs 612 control points (1224 degrees of freedom), while the FEA method uses 8385 nodes (16,770 degrees of freedom). It is 
worth noting that the FEA analysis results were computed using commercial software and processed in MATLAB.

Fig. A1. The boundary conditions of the 2D plate.
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Fig. A2. Mesh for the 2D plate: (a) IGA, (b) FEA.

Fig. A3 displays the displacement results for the 2D plate. It can be observed that the displacement results obtained using IGA closely align with 
those from FEA. Fig. A4 illustrates the stress results for the 2D plate, further demonstrating that the IGA analysis results are in good agreement with 
those from FEA. These results demonstrate that IGA can achieve higher analytical accuracy with fewer elements and degrees of freedom. The reduced 
number of degrees of freedom decreases the size of the stiffness matrix, thereby enhancing the efficiency of solving the system of equilibrium 
equations. It should be noted that this simple example was used to illustrate the advantages of IGA, without delving into an in-depth analysis. The 
primary focus of this study is to develop a topology optimization method for high-cycle fatigue utilizing the IGA framework. A more comprehensive 
discussion of the benefits of IGA can be found in the literature [84–86,95].

Fig. A3. Displacement results for the 2D plate: (a) IGA, (b) FEA.
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Fig. A4. Stress results for the 2D plate: (a) IGA, (b) FEA.

Appendix B. Supplementary to isogeometric structural mechanical analysis

For 2D structural problems, the B matrix is expressed as follows: 

B =

⎡

⎢
⎢
⎢
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⎢
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0 ...
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0
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∂y
... 0

∂Nnc

∂y
∂N1

∂x
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...
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∂y

⎤

⎥
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(B1) 

and 
[

∂Ni

∂x
∂Ni

∂y

]

=

[
∂Ni

∂u
∂Ni

∂v

]

J− 1
1 (B2) 

where Ni is the basis function of the NURBS element and nc denotes the number of control points for each element.
The Jacobi matrix J1 is calculated by the following equation: 

J1 =

⎡

⎢
⎢
⎢
⎣

∂xi

∂u
∂yi

∂u
∂xi

∂v
∂yi

∂v

⎤

⎥
⎥
⎥
⎦

(B3) 

In addition, the mapping from the Gaussian quadrature domain to the NURBS parameter domain is: 
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(B4) 

The corresponding Jacobi matrix J2 is: 

J2 =

⎡

⎢
⎢
⎢
⎣
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Appendix C. Sensitivity analysis of the objective function

In this study, the objective function is the compliance minimization of the entire structure, and its first-order sensitivity with respect to the design 
variables is given by: 

∂c(ρ)
∂ρi,j

e
=

∂c(ρ)
∂ρe

∂ρe

∂ρ̂i,j
e

∂ρ̂i,j
e

∂ρi,j
e

∂ρi,j
e

∂ρi,j
e

(C1) 

where ∂c(ρ)
∂ρe 

and ∂ρe

∂ρ̂
i,j
e 

are calculated from Eqs. (31) and (25), respectively. 

∂c(ρ)
∂ρe

= − pp(ρe)
pp− 1

(E0 − Emin)(ue)
T
1k0(ue)1 (C2) 

∂ρe

∂ρ̂i,j
e

=
∑n

i=1

∑m

j=1
Nj,q

i,p(ξe, ηe) (C3) 

Furthermore, ∂̂ρ
i,j
e

∂ρi,j
e 

is derived from the Heaviside function: 

∂ρ̂i,j
e

∂ρi,j
e
=

β
(
sech

(
β
(
ρi,j

e − α
)))2

tanh(βα) + tanh(β(1 − α)) (C4) 

Finally, ∂ρi,j
e

∂ρi,j
e 

is generated from the density filter Eq. (27) as follows: 

∂ρi,j
e

∂ρi,j
e
=

wij,l
∑

la∈Nij

wij,la
(C5) 

Appendix D. Sensitivity analysis of the volume constraint function

The volume constraint function depends only on the relative densities of the filtering function and the Heaviside function mapping. Therefore, the 
first-order sensitivity of the volume constraint function to the design variables is given by: 

∂V(ρ)
∂ρi,j

e
=

∂V(ρ)
∂ρe

∂ρe

∂ρ̂i,j
e

∂ρ̂i,j
e
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e
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e

∂ρi,j
e

(D1) 

where ∂V(ρ)
∂ρe 

can be obtained according to Eq. (24). 

∂V(ρ)
∂ρe

= ve (D2) 

Further, the sensitivity of the volume constraint function can be derived according to Eqs. (C3), (C4) and (C5) as follows: 
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e
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Data availability

Data will be made available on request.
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